Largest Rectangle in Histogram
Given n non-negative integers representing the histogram's bar height where the width of each bar is 1, find the area of largest rectangle in the histogram.
Above is a histogram where width of each bar is 1, given height = [2,1,5,6,2,3]
.
The largest rectangle is shown in the shaded area, which has area = 10
unit.
For example, Given height = [2,1,5,6,2,3]
, return 10
.
思路: 注意一点: 只要计算出以每个柱形为最小值的矩形面积即可。使用一个栈,栈内始终保存一个递增序列的 index,若是 新的柱形长度小于栈顶元素,则退出栈顶直到栈内元素的长度不大于新的柱形的长度为止,并且,对于每一个退栈元素,计算以其长度为最小值的面积。(宽的左边为其自身位置,右边为新到元素的位置)时间:O(n)
class Solution {public: int largestRectangleArea(vector &height) { int n = height.size(), max_area = 0; int Id, area; int i = 0; stack st; // save the index while(i < n) { if(st.empty() || height[i] >= height[st.top()]) st.push(i++); else { Id = st.top(); st.pop(); area = height[Id] * (st.empty() ? i : i - st.top() - 1); if(area > max_area) max_area = area; } } while(!st.empty()) { Id = st.top(); st.pop(); area = height[Id] * (st.empty() ? i : i - st.top() - 1); if(area > max_area) max_area = area; } return max_area; }};
Maximal Rectangle
Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing all ones and return its area.
思路: 一行一行的记录下当前高度, 用上题的思路计算一下,即可。时间: O(n2)
int getMaxArea(vector &h) { stack st; int maxArea, i = 0; while(i < h.size()) { if(st.empty() || h[st.top()] <= h[i]) { st.push(i++); continue; } while(!st.empty() && h[st.top()] > h[i]) { int id = st.top(); st.pop(); int area = h[id] * (st.empty() ? i : i - st.top() - 1); if(area > maxArea) maxArea = area; } } while(!st.empty()) { int id = st.top(); st.pop(); int area = h[id] * (st.empty() ? i : i - st.top() - 1); if(area > maxArea) maxArea = area; } return maxArea;}class Solution {public: int maximalRectangle(vector> &matrix) { if(matrix.size() == 0 || matrix[0].size() == 0) return 0; int row = matrix.size(), col = matrix[0].size(); vector h(row, 0); int maxArea = 0; for(int c = 0; c < col; ++c) { for(int r = 0; r < row; ++r) { if(matrix[r][c] == '1') ++h[r]; else h[r] = 0; } maxArea = max(maxArea, getMaxArea); } return maxArea; }};